Category Archives: Analytics

Are You Content with Your Organization’s Content Strategy?

In this post, we will examine ways that your organization can separate useful content into separate categories that amplify your own staff’s performance. Before we start, I have a few questions for you.

What attributes of your organization’s strategies can you attribute to successful outcomes? How long do you deliberate before taking specific deliberate actions? Do you converse with your employees about decisions that might be the converse of what they would expect? Is a process modification that saves a minute in someone’s workday considered too minute for consideration? Do you present your employees with a present for their innovative ideas? Do you perfect your plans in anticipation of perfect outcomes? Or do you project foregone conclusions on a project before it is completed?

If you have good answers to these questions, that is awesome! I would not contest any of your answers since this is not a contest. In fact, this is actually something quite different. Before you combine all these questions in a heap and thresh them in a combine, and before you buffet me with a buffet of skeptical remarks, stick with me and let me explain. Do not close the door on me when I am so close to giving you an explanation.

What you have just experienced is a plethora of heteronyms. Heteronyms are words that are spelled identically but have different meanings when pronounced differently. If you include the title of this blog, you were just presented with 13 examples of heteronyms in the preceding paragraphs. Can you find them all?

Seriously now, what do these word games have to do with content strategy? I would say that they have a great deal to do with it. Specifically, in the modern era of massive data collections and exploding content repositories, we can no longer simply rely on keyword searches to be sufficient. In the case of a heteronym, a keyword search would return both uses of the word, even though their meanings are quite different. In “information retrieval” language, we would say that we have high RECALL, but low PRECISION. In other words, we can find most occurrences of the word (recall), but not all the results correspond to the meaning of our search (precision). That is no longer good enough when the volume is so high.

The key to success is to start enhancing and augmenting content management systems (CMS) with additional features: semantic content and context. This is accomplished through tags, annotations, and metadata (TAM). TAM management, like content management, begins with business strategy.

Strategic content management focusses on business outcomes, business process improvement, efficiency (precision – i.e., “did I find only the content that I need without a lot of noise?”), and effectiveness (recall – i.e., “did I find all the content that I need?”). Just because people can request a needle in the haystack, it is not a good thing to deliver the whole haystack that contains that needle. Clearly, such a content delivery system is not good for business productivity. So, there must be a strategy regarding who, what, when, where, why, and how is the organization’s content to be indexed, stored, accessed, delivered, used, and documented. The content strategy should emulate a digital library strategy. Labeling, indexing, ease of discovery, and ease of access are essential if end-users are to find and benefit from the collection.

My favorite approach to TAM creation and to modern data management in general is AI and machine learning (ML). That is, use AI and machine learning techniques on digital content (databases, documents, images, videos, press releases, forms, web content, social network posts, etc.) to infer topics, trends, sentiment, context, content, named entity identification, numerical content extraction (including the units on those numbers), and negations. Do not forget the negations. A document that states “this form should not be used for XYZ” is exactly the opposite of a document that states “this form must be used for XYZ”. Similarly, a social media post that states “Yes. I believe that this product is good” is quite different from a post that states “Yeah, sure. I believe that this product is good. LOL.”

Contextual TAM enhances a CMS with knowledge-driven search and retrieval, not just keyword-driven. Contextual TAM includes semantic TAM, taxonomic indexing, and even usage-based tags (digital breadcrumbs of the users of specific pieces of content, including the key words and phrases that people used to describe the content in their own reports). Adding these to your organization’s content makes the CMS semantically searchable and usable. That’s far more laser-focused (high-precision) than keyword search.

One type of implementation of a content strategy that is specific to data collections are data catalogs. Data catalogs are very useful and important. They become even more useful and valuable if they include granular search capabilities. For example, the end-user may only need the piece of the dataset that has the content that their task requires, versus being delivered the full dataset. Tagging and annotating those subcomponents and subsets (i.e., granules) of the data collection for fast search, access, and retrieval is also important for efficient orchestration and delivery of the data that fuels AI, automation, and machine learning operations.

One way to describe this is “smart content” for intelligent digital business operations. Smart content includes labeled (tagged, annotated) metadata (TAM). These labels include content, context, uses, sources, and characterizations (patterns, features) associated with the whole content and with individual content granules. Labels can be learned through machine learning, or applied by human experts, or proposed by non-experts when those labels represent cognitive human-discovered patterns and features in the data. Labels can be learned and applied in existing CMS, in massive streaming data, and in sensor data (collected in devices at the “edge”).

Some specific tools and techniques that can be applied to CMS to generate smart content include these:

  • Natural language understanding and natural language generation
  • Topic modeling (including topic drift and topic emergence detection)
  • Sentiment detection (including emotion detection)
  • AI-generated and ML-inferred content and context
  • Entity identification and extraction
  • Numerical quantity extraction
  • Automated structured (searchable) database generation from textual (unstructured) document collections (for example: Textual ETL).

Consequently, smart content thrives at the convergence of AI and content. Labels are curated and stored with the content, thus enabling curation, cataloguing (indexing), search, delivery, orchestration, and use of content and data in AI applications, including knowledge-driven decision-making and autonomous operations. Techniques that both enable (contribute to) and benefit from smart content are content discovery, machine learning, knowledge graphs, semantic linked data, semantic data integration, knowledge discovery, and knowledge management. Smart content thus meets the needs for digital business operations and autonomous (AI and intelligent automation) activities, which must devour streams of content and data – not just any content, but smart content – the right (semantically identified) content delivered at the right time in the right context.

The four tactical steps in a smart content strategy include:

  1. Characterize and contextualize the patterns, events, and entities in the content collection with semantic (contextual) tags, annotation, and metadata (TAM).
  2. Collect, curate, and catalog (i.e., index) each TAM component to make it searchable, accessible, and reusable.
  3. Deliver the right content at the right time in the right context to the decision agent.
  4. Decide and act on the delivered insights and knowledge.

Remember, do not be content with your current content management strategy. But discover and deliver the perfect smart content that perfects your digital business outcomes. Smart content strategy can save end-users countless minutes in a typical workday, and that type of business process improvement certainly is not too minute for consideration.

Top 10 Data Innovation Trends During 2020

The year 2020 was remarkably different in many ways from previous years. In at least one way, it was not different, and that was in the continued development of innovations that are inspired by data. This steady march of data-driven innovation has been a consistent characteristic of each year for at least the past decade. These data-fueled innovations come in the form of new algorithms, new technologies, new applications, new concepts, and even some “old things made new again”.

I provide below my perspective on what was interesting, innovative, and influential in my watch list of the Top 10 data innovation trends during 2020.

1) Automated Narrative Text Generation tools became incredibly good in 2020, being able to create scary good “deep fake” articles. The GPT-3 (Generative Pretrained Transformer, 3rd generation text autocomplete) algorithm made headlines since it demonstrated that it can start with a very thin amount of input (a short topic description, or a question), from which it can then generate several paragraphs of narrative that are very hard (perhaps impossible) to distinguish from human-generated text. However, it is far from perfect, since it certainly does not have reasoning skills, and it also loses its “train of thought” after several paragraphs (e.g., by making contradictory statements at different places in the narrative, even though the statements are nicely formed sentences).

2) MLOps became the expected norm in machine learning and data science projects. MLOps takes the modeling, algorithms, and data wrangling out of the experimental “one off” phase and moves the best models into deployment and sustained operational phase. MLOps “done right” addresses sustainable model operations, explainability, trust, versioning, reproducibility, training updates, and governance (i.e., the monitoring of very important operational ML characteristics: data drift, concept drift, and model security).

3) Concept drift by COVID – as mentioned above, concept drift is being addressed in machine learning and data science projects by MLOps, but concept drift is so much bigger than MLOps. Specifically, it feels to many of us like a decade of business transformation was compressed into the one year 2020. How and why businesses make decisions, customers make decisions, and anybody else makes decisions became conceptually and contextually different in 2020. Customer purchase patterns, supply chain, inventory, and logistics represent just a few domains where we saw new and emergent behaviors, responses, and outcomes represented in our data and in our predictive models. The old models were not able to predict very well based on the previous year’s data since the previous year seemed like 100 years ago in “data years”. Another example was in new data-driven cybersecurity practices introduced by the COVID pandemic, including behavior biometrics (or biometric analytics), which were driven strongly by the global “work from home” transition, where many insecurities in networks, data-sharing, and collaboration / communication tools were exposed. Behavior biometrics may possibly become the essential cyber requirement for unique user identification, finally putting weak passwords out of commission. Data and network access controls have similar user-based permissions when working from home as when working behind the firewall at your place of business, but the security checks and usage tracking can be more verifiable and certified with biometric analytics. This is critical in our massively data-sharing world and enterprises.

4) AIOps increasingly became a focus in AI strategy conversations. While it is similar to MLOps, AIOps is less focused on the ML algorithms and more focused on automation and AI applications in the enterprise IT environment – i.e., focused on operationalizing AI, including data orchestration, the AI platform, AI outcomes monitoring, and cybersecurity requirements. AIOps appears in discussions related to ITIM (IT infrastructure monitoring), SIEM (security information and event management), APM (application performance monitoring), UEBA (user and entity behavior analytics), DevSecOps, Anomaly Detection, Rout Cause Analysis, Alert Generation, and related enterprise IT applications.

5) The emergence of Edge-to-Cloud architectures clearly began pushing Industry 4.0 forward (with some folks now starting to envision what Industry 5.0 will look like). The Edge-to-Cloud architectures are responding to the growth of IoT sensors and devices everywhere, whose deployments are boosted by 5G capabilities that are now helping to significantly reduce data-to-action latency. In some cases, the analytics and intelligence must be computed and acted upon at the edge (Edge Computing, at the point of data collection), as in autonomous vehicles. In other cases, the analytics and insights may have more significant computation requirements and less strict latency requirements, thus allowing the data to be moved to larger computational resources in the cloud. The almost forgotten “orphan” in these architectures, Fog Computing (living between edge and cloud), is now moving to a more significant status in data and analytics architecture design.

6) Federated Machine Learning (FML) is another “orphan” concept (formerly called Distributed Data Mining a decade ago) that found new life in modeling requirements, algorithms, and applications in 2020. To some extent, the pandemic contributed to this because FML enforces data privacy by essentially removing data-sharing as a requirement for model-building across multiple datasets, multiple organizations, and multiple applications. FML model training is done incrementally and locally on the local dataset, with the meta-parameters of the local models then being shared with a centralized model-inference engine (which does not see any of the private data). The centralized ML engine then builds a global model, which is communicated back to the local nodes. Multiple iterations in parameter-updating and hyperparameter-tuning can occur between local nodes and the central inference engine, until satisfactory model performance is achieved. All through these training stages, data privacy is preserved, while allowing for the generation of globally useful, distributable, and accurate models.

7) Deep learning (DL) may not be “the one algorithm to dominate all others” after all. There was some research published earlier in 2020 that found that traditional, less complex algorithms can be nearly as good or better than deep learning on some tasks. This could be yet another demonstration of the “no free lunch theorem”, which basically states that there is no single universal algorithm that is the best for all problems. Consequently, the results of the new DL research may not be so surprising, but they certainly prompt us with necessary reminders that sometimes simple is better than complexity, and that the old saying is often still true: “perfect is the enemy of good enough.”

8) RPA (Robotic Process Automation) and intelligent automation were not new in 2020, but the surge in their use and in the number of providers was remarkable. While RPA is more rule-based (informed by business process mining, to automate work tasks that have very little variation), intelligent automation is more data-driven, adaptable, and self-learning in real-time. RPA mimics human actions, by repetition of routine tasks based on a set of rules. Intelligent automation simulates human intelligence, which responds and adapts to emergent patterns in new data, and which is capable of learning to automate non-routine tasks. Keep an eye on the intelligent automation space for new and exciting developments to come in the near future around hyperautomation and enterprise intelligence, such as the emergence of learning business systems that learn and adapt their processes based on signals in enterprise data across numerous business functions: finance, marketing, HR, customer service, production, operations, sales, and management.

9) The Rise of Data Literacy initiatives, imperatives, instructional programs, and institutional awareness in 2020 was one of the two most exciting things that I witnessed during the year. (The other one of the two is next on my list.) I have said for nearly 20 years that data literacy must become a key component of education at all levels and an aptitude of nearly all employees in all organizations. The world is data, revolves around data, produces and consumes massive quantities of data, and drives innovative emerging technologies that are inspired by, informed by, and fueled by data: augmented reality (AR), virtual reality (VR), autonomous vehicles, computer vision, digital twins, drones, robotics, AI, IoT, hyperautomation, virtual assistants, conversational AI, chatbots, natural language understanding and generation (NLU, NLG), automatic language translation, 4D-printing, cyber resilience, and more. Data literacy is essential for future of work, future innovation, work from home, and everyone that touches digital information. Studies have shown that organizations that are not adopting data literacy programs are not only falling behind, but they may stay behind, their competition. Get on board with data literacy! Now!

10) Observability emerged as one of the hottest and (for me) most exciting developments of the year. Do not confuse observability with monitoring (specifically, with IT monitoring). The key difference is this: monitoring is what you do, and observability is why you do it. Observability is a business strategy: what you monitor, why you monitor it, what you intend to learn from it, how it will be used, and how it will contribute to business objectives and mission success. But the power, value, and imperative of observability does not stop there. Observability meets AI – it is part of the complete AIOps package: “keeping an eye on the AI.” Observability delivers actionable insights, context-enriched data sets, early warning alert generation, root cause visibility, active performance monitoring, predictive and prescriptive incident management, real-time operational deviation detection (6-Sigma never had it so good!), tight coupling of cyber-physical systems, digital twinning of almost anything in the enterprise, and more. And the goodness doesn’t stop there. The emergence of standards, like OpenTelemetry, can unify all aspects of your enterprise observability strategy: process instrumentation, sensing, metrics specification, context generation, data collection, data export, and data analysis of business process performance and behavior monitoring in the cloud. This plethora of benefits is a real game-changer for open-source self-service intelligent data-driven business process monitoring (BPM) and application performance monitoring (APM), feedback, and improvement. As mentioned above, monitoring is “what you are doing”, and observability is “why you are doing it.” If your organization is not having “the talk” about observability, now is the time to start – to understand why and how to produce business value through observability into the multitude of data-rich digital business applications and processes all across the modern enterprise. Don’t drown in those deep seas of data. Instead, develop an Observability Strategy to help your organization ride the waves of data, to help your business innovation and transformation practices move at the speed of data.

In summary, my top 10 data innovation trends from 2020 are:

  • GPT-3
  • MLOps
  • Concept Drift by COVID
  • AIOps
  • Edge-to-Cloud and Fog Computing
  • Federated Machine Learning
  • Deep Learning meets the “no free lunch theorem”
  • RPA and Intelligent Automation
  • Rise of Data Literacy
  • Observability

If I were to choose what was hottest trend in 2020, it would not be a single item in this top 10 list. The hottest trend would be a hybrid (convergence) of several of these items. That hybrid would include: Observability, coupled with Edge and the ever-rising ubiquitous IoT (sensors on everything), boosted by 5G and cloud technologies, fueling ever-improving ML and DL algorithms, all of which are enabling “just-in-time” intelligence and intelligent automation (for data-driven decisions and action, at the point of data collection), deployed with a data-literate workforce, in a sustainable and trusted MLOps environment, where algorithms, data, and applications work harmoniously and are governed and secured by AIOps.

If we learned anything from the year 2020, it should be that trendy technologies do not comprise a menu of digital transformation solutions to choose from, but there really is only one combined solution, which is the hybrid convergence of data innovation technologies. From my perspective, that was the single most significant data innovation trend of the year 2020.

Analytics Insights and Careers at the Speed of Data

How to make smarter data-driven decisions at scale:

The determination of winners and losers in the data analytics space is a much more dynamic proposition than it ever has been. One CIO said it this way, “If CIOs invested in machine learning three years ago, they would have wasted their money. But if they wait another three years, they will never catch up.”  Well, that statement was made five years ago! A lot has changed in those five years, and so has the data landscape.

The dynamic changes of the business requirements and value propositions around data analytics have been increasingly intense in depth (in the number of applications in each business unit) and in breadth (in the enterprise-wide scope of applications in all business units in all sectors). But more significant has been the acceleration in the number of dynamic, real-time data sources and corresponding dynamic, real-time analytics applications.

We no longer should worry about “managing data at the speed of business,” but worry more about “managing business at the speed of data.”

One of the primary drivers for the phenomenal growth in dynamic real-time data analytics today and in the coming decade is the Internet of Things (IoT) and its sibling the Industrial IoT (IIoT). With its vast assortment of sensors and streams of data that yield digital insights in situ in almost any situation, the IoT / IIoT market has a projected market valuation of $1.5 trillion by 2030. The accompanying technology Edge Computing, through which those streaming digital insights are extracted and then served to end-users, has a projected valuation of $800 billion by 2028.

With dynamic real-time insights, this “Internet of Everything” can then become the “Internet of Intelligent Things”, or as I like to say, “The Internet used to be a thing. Now things are the Internet.” The vast scope of this digital transformation in dynamic business insights discovery from entities, events, and behaviors is on a scale that is almost incomprehensible. Traditional business analytics approaches (on laptops, in the cloud, or with static datasets) will not keep up with this growing tidal wave of dynamic data.

Another dimension to this story, of course, is the Future of Work discussion, including creation of new job titles and roles, and the demise of older job titles and roles. One group has declared, “IoT companies will dominate the 2020s: Prepare your resume!” This article quotes an older market projection (from 2019), which estimated “the global industrial IoT market could reach $14.2 trillion by 2030.”

In dynamic data-driven applications, automation of the essential processes (in this case, data triage, insights discovery, and analytics delivery) can give a power boost to ride that tidal wave of fast-moving data streams. One can prepare for and improve skill readiness for these new business and career opportunities in several ways:

  • Focus on the automation of business processes: e.g., artificial intelligence, robotics, robotic process automation, intelligent process automation, chatbots.
  • Focus on the technologies and engineering components: e.g., sensors, monitoring, cloud-to-edge, microservices, serverless, insights-as-a-service APIs, IFTTT (IF-This-Then-That) architectures.
  • Focus on the data science: e.g., machine learning, statistics, computer vision, natural language understanding, coding, forecasting, predictive analytics, prescriptive analytics, anomaly detection, emergent behavior discovery, model explainability, trust, ethics, model monitoring (for data drift and concept drift) in dynamic environments (MLOps, ModelOps, AIOps).
  • Focus on specific data types: e.g., time series, video, audio, images, streaming text (such as social media or online chat channels), network logs, supply chain tracking (e.g., RFID), inventory monitoring (SKU / UPC tracking).
  • Focus on the strategies that aim these tools, talents, and technologies at reaching business mission and goals: e.g., data strategy, analytics strategy, observability strategy (i.e., why and where are we deploying the data-streaming sensors, and what outcomes should they achieve?).

Insights discovery from ubiquitous data collection (via the tens of billions of connected devices that will be measuring, monitoring, and tracking nearly everything internally in our business environment and contextually in the broader market and global community) is ultimately about value creation and business outcomes. Embedding real-time dynamic analytics at the edge, at the point of data collection, or at the moment of need will dynamically (and positively) change the slope of your business or career trajectory. Dynamic sense-making, insights discovery, next-best-action response, and value creation is essential when data is being acquired at an enormous rate. Only then can one hope to realize the promised trillion-dollar market value of the Internet of Everything.

For more advice, check out this upcoming webinar panel discussion, sponsored by AtScale, with data and analytics leaders from Wayfair, Cardinal Health,, and Slickdeals: “How to make smarter data-driven decisions at scale.” Each panelist will share an overview of their data & analytics journey, and how they are building a self-service, data-driven culture that scales. Join us on Wednesday, March 31, 2021 (11:00am PT | 2:00pm ET). Save your spot here: I hope that you find this event useful. And I hope to see you there!

Please follow me on LinkedIn and follow me on Twitter at @KirkDBorne.