Tag Archives: Analytics

Data Science Training Opportunities

A few years ago, I generated a list of places to receive data science training. That list has become a bit stale. So, I have updated the list, adding some new opportunities, keeping many of the previous ones, and removing the obsolete ones. Here are 30 training opportunities that I encourage you to explore:

  1. The Booz Allen Field Guide to Data Science
  2. NVIDIA Deep Learning Institute
  3. Metis Data Science Training
  4. Leada’s online analytics labs
  5. Data Science Training by General Assembly
  6. Learn Data Science Online by DataCamp
  7. (600+) Colleges and Universities with Data Science Degrees
  8. Data Science Master’s Degree Programs
  9. Data Analytics, Machine Learning, & Statistics Courses at edX
  10. Data Science Certifications (by AnalyticsVidhya)
  11. Learn Everything About Analytics (by AnalyticsVidhya)
  12. NYC Data Science Academy
  13. Big Bang Data Science Solutions
  14. CommonLounge
  15. IntelliPaat Online Training
  16. DataQuest
  17. NCSU Institute for Advanced Analytics
  18. District Data Labs
  19. Data School
  20. Galvanize
  21. Coursera
  22. Udacity Nanodegree Program to Become a Data Scientist
  23. Udemy – Data & Analytics
  24. Insight Data Science Fellows Program
  25. The Open Source Data Science Masters
  26. Jigsaw Academy Post Graduate Program in Data Science & Machine Learning
  27. O’Reilly Media Learning Paths
  28. Data Engineering and Data Science Training by Go Data Driven
  29. 18 Resources to Learn Data Science Online (by Simplilearn)
  30. Top Online Data Science Courses to Learn Data Science

Follow Kirk Borne on Twitter @KirkDBorne

Field Guide to Data Science
Learn the what, why, and how of Data Science and Machine Learning here.

Analytics By Design, For The Analytics Win

We hear a lot of hype that says organizations should be “Datafirst”, or “AI-first, or “Datadriven”, or “Technologydriven”. A better prescription for business success is for our organization to be analyticsdriven and thus analytics-first, while being data-informed and technology-empowered. Analytics are the products, the outcomes, and the ROI of our Big DataData Science, AI, and Machine Learning investments!

AI strategies and data strategies should therefore focus on outcomes first. Such a focus explicitly induces the corporate messaging, strategy, and culture to be better aligned with what matters the most: business outcomes!

The analytics-first strategy can be referred to as Analytics By Design, which is derived from similar principles in education: Understanding By Design. Analytics are the outcomes of data activities (data science, machine learning, AI) within the organization. So we should keep our eye on the prize — maintaining our focus on the business outcomes (the analytics), which are data-fueled, technology-enabled, and metrics-verified. That’s the essence of Analytics by Design.

The longer complete version of this article “How Analytics by Design Tackles The Yin and Yang of Metrics and Data” is available at the Western Digital DataMakesPossible.com blog site. In that article, you can read about:

  • The two complementary roles of data — “the yin and the yang” — in which data are collected at the front end (from business activities, customer interactions, marketing reports, and more), while data are also collected at the back end as metrics to verify performance and compliance with stated goals and objectives.
  • The four principles of Analytics By Design.
  • The five take-away messages for organizations that have lots of data and that want to win with Analytics By Design.

For data scientists, the message is “Come for the data. Stay for the science!”

Read the full story here: “How Analytics by Design Tackles The Yin and Yang of Metrics and Data

Bias-Busting with Diversity in Data

Diversity in data is one of the three defining characteristics of big data — high data variety — along with high data volume and high velocity. We discussed the power and value of high-variety data in a previous article: “The Five Important D’s of Big Data Variety” We won’t repeat those lessons here, but we focus specifically on the bias-busting power of high-variety data, which was actually the last of the five D’s mentioned in the earlier article: Decreased model bias.

Here, we broaden our meaning of “bias” to go beyond model bias, which has the technical statistical meaning of “underfitting”, which essentially means that there is more information and structure in the data than our model has captured. In the current context, we apply a broader definition of bias: lacking a neutral viewpoint, or having a viewpoint that is partial. We will call this natural bias, since the examples can be considered as “naturally occurring” without obvious intent. This article does not elaborate on personal bias (which might be intentional), though the cause for that kind of prejudice is essentially the same: not considering and taking into account the full knowledge and understanding of the person or entity that is the subject of the bias.

We wrote a longer complete version of this article here: “Busting Bias with More Data Variety” at the Western Digital DataMakesPossible.com blog site.

In that full version of this article, we go on to describe several examples of natural bias and then to present a recommended bias-busting remedy for those of us working in the realm of data science. We refer to that remedy as the CCDI data & analytics strategy: Collect, Curate, Differentiate, and Innovate.

Here is one of the four examples of natural bias that you will find in the longer, complete version of the article:

  • An example of natural bias comes from a famous cartoon. The cartoon shows three or more blind men (or blindfolded men) feeling an elephant. They each feel a different aspect of the elephant: the tail, a tusk, an ear, the body, a leg — and consequently they each offer a different interpretation of what they believe this thing is (which they cannot see). They say it might be a rope (the tail), or a spear (the tusk), or a large fan (the ear), or a wall (the body), or a tree trunk (the leg). Only after the blindfolds are removed (or an explanation is given) do they finally “see” the full truth of this large complex reality. It has many different features, facets, and characteristics. Focusing on only one of those features and insisting that this partial view describes the whole thing would be foolish. We have similar complex systems in our organizations, whether it is the human body (in healthcare), or our population of customers (in marketing), or the Earth (in climate science), or different components in a complex system (like a manufacturing facility), or our students (in a classroom), or whatever. Unless we break down the silos and start sharing our data (insights) about all the dimensions, viewpoints, and perspectives of our complex system, we will consequently be drawn into biased conclusions and actions, and thus miss the key insights that enable us to understand the wonderful complexity and diversity of the thing in its entirety. Integrating the many data sources enables us to arrive at the “single correct view” of the thing: the 360 view!
Collecting high-variety data from diverse sources, connecting the dots, and building the 360 view of our domain is not only the data silo-busting thing to do. It is also the bias-busting thing to do. High-variety data makes that possible, and there is no shortage of biases for high-variety data to bust, including cognitive bias, confirmation bias, salience bias, and sampling bias, just to name a few! …
Read the full story here… “Busting Bias with More Data Variety

Variety is the Secret Sauce for Big Discoveries in Big Data

When I was out for a walk recently, I heard a loud low-flying aircraft passing overhead. This was not unusual since we live in the flight path of planes landing at a major international airport about 10 miles from our home. In this case, I thought to myself that the sound seemed more directly overhead and lower than normal as well as being suggestive of a larger than average jet aircraft.

I realized that in my one simple thought, I had made three different inferences from a single stream of data. The data stream was the audible sound of the aircraft. The three inferences were about the altitude (lower than normal), the size (larger than average), and the flight path (more overhead). When I looked up, my tri-inference hypothesis was confirmed. The plane was a very large, low-flying jet for a major overnight shipping company. The slightly unusual flight path may have been associated with the fact that these planes are probably instructed to land on a different runway at the airport than the usual commercial passenger airlines’ flights – consequently, the altitude and location were slightly different from the slightly smaller commercial passenger airlines that pass overhead every day.

This situation caused me to reflect on how often we can jump to conclusions, infer a hypothesis, and (maybe without as much proof as in this case) we assume that our conclusion is true.

For the modern digital organization, the proof of any inference (that drives decisions) should be in the data! Rich and diverse data collections enable more accurate and trustworthy conclusions.

I frequently refer to the era of big data as “the end of demographics”. By that, I mean that we now have many more features, attributes, data sources, and insights into each entity in our domain: people, processes, and products. These multiple data sources enable a “360 view” of the entity, thus empowering a more personalized (even hyper-personalized) understanding of and response to the needs of that unique entity. In “big data language”, we are talking about one of the 3 V’s of big data: big data Variety!

High variety is one of the foundational key features of big data — we now measure many more features, characteristics, and dimensions of insight into nearly everything due to the plethora of data sources, sensors, and signals that we measure, monitor, and mine. Consequently, we no longer need to rely on a limited number of features and attributes when making decisions, taking actions, and generating inferences. We can make better, tailored, more personalized decisions and actions. Every entity is unique! That marks the end of demographics.

Here is another example: suppose that a person goes to their doctor to report problems with painful headaches. That is a single symptom (headache pain) — a single data source, a single signal, a single sensor. However, one could imagine a large number of possible inferences from that one single signal. The headaches could be caused by insufficient sleep (sleep apnea), high blood pressure, pregnancy, or a brain tumor. Obviously, each one of these diagnoses carries a seriously different course of action and treatment.

In “data science language”, what we are describing are different segments (clusters) in the hyperspace of symptoms and causes in which the many causes (clusters) are projected on top of one another (overlap one another) in the symptom space. The way that a data scientist resolves that degeneracy (another data science word) is to introduce more parameters (higher variety data) in order to “look at” those overlapping clusters from different angles and perspectives, thus resolving the different diagnosis clusters. High variety data enables the discovery of multiple clusters, and eventually identifies the correct cluster (correct diagnosis, in this case).

Higher variety data means that we are adding data from other sensors, other signals, other sources, and of different types. Going back to our low-flying airplane example, this has the following application: I not only heard the aircraft (sound = audio data), but I also looked at it (sight = visual data) and I observed its flight path (dynamic change over time = time series data). The proof of my inference about the airplane was in the data! Additional data sources provided the variety of data signals that were needed in order to derive a correct conclusion.

Similarly, when you go to the doctor with that headache, the doctor will start asking about other symptoms (e.g., lack of appetite; or other pains) and may order other medical tests (blood pressure checks, or other lab results). Those additional data sources and sensors provide the variety of data signals that are needed in order to derive the correct diagnosis.

These examples (low-flying aircraft, and headache pain) are representative analogies of a large number of different use cases in every organization, every business, and every process. The more data you have, the better you are able to detect and discover interesting and important phenomena and events. However, the more variety of data you have, the better you are able to correctly diagnose, interpret, understand, gain insights from, and take appropriate action in response to those phenomena and events.

High-variety data is the fuel that powers these insights, because variety is definitely the secret sauce for bigger and better discovery from big data collections.

Follow Kirk on Twitter at @KirkDBorne

Why Today’s Big Data is Not Yesterday’s Big Data — Exponential and Combinatorial Growth

(The following article was first published in July of 2013 at analyticbridge.com. At least 3 of the links in the original article are now obsolete and/or broken. I re-post the article here with the correct links. A lot of things in the Big Data, Data Science, and IoT universe have changed dramatically since that first publication, but I did not edit the article accordingly, in order to preserve the original flavor and context. The central message is still worth repeating today.)

The on-going Big Data media hype stirs up a lot of passionate voices. There are naysayers (“it is nothing new“), doomsayers (“it will disrupt everything”), and soothsayers (e.g., Predictive Analytics experts). The naysayers are most bothersome, in my humble opinion. (Note: I am not talking about skeptics, whom we definitely and desperately need during any period of maximized hype!)

We frequently encounter statements of the “naysayer” variety that tell us that even the ancient Romans had big data.  Okay, I understand that such statements logically follow from one of the standard definitions of big data: data sets that are larger, more complex, and generated more rapidly than your current resources (computational, data management, analytic, and/or human) can handle — whose characteristics correspond to the 3 V’s of Big Data.  This definition of Big Data could be used to describe my first discoveries in a dictionary or my first encounters with an encyclopedia.  But those “data sets” are hardly “Big Data” — they are universally accessible, easily searchable, and completely “manageable” by their handlers. Therefore, they are SMALL DATA, and thus it is a myth to label them as “Big Data”. By contrast, we cannot ignore the overwhelming fact that in today’s real Big Data tsunami, each one of us generates insurmountable collections of data on our own. In addition, the correlations, associations, and links between each person’s digital footprint and all other persons’ digital footprints correspond to an exponential (actually, combinatorial) explosion in additional data products.

Nevertheless, despite all of these clear signs that today’s big data environment is something radically new, that doesn’t stop the naysayers.  With the above standard definition of big data in their quiver, the naysayers are fond of shooting arrows through all of the discussions that would otherwise suggest that big data are changing society, business, science, media, government, retail, medicine, cyber-anything, etc. I believe that this naysayer type of conversation is unproductive, unhelpful, and unscientific. The volume, complexity, and speed of data today are vastly different from anything that we have ever previously experienced, and those facts will be even more emphatic next year, and even more so the following year, and so on.  In every sector of life, business, and government, the data sets are becoming increasingly off-scale and exponentially unmanageable. The 2011 McKinsey report Big Data: The Next Frontier for Innovation, Competition, and Productivity.” made this abundantly clear.  When the Internet of Things and machine-to-machine applications really become established, then the big data V’s of today will seem like child’s play.

In an attempt to illustrate the enormity of scale of today’s (and tomorrow’s) big data, I have discussed the exponential explosion of data in my TedX talk Big Data, small world (e.g., you can fast-forward to my comments on this topic starting approximately at the 9:00 minute mark in the video). You can also read more about this topic in the article Big Data Growth – Compound Interest on Steroids“, where I have elaborated on the compound growth rate of big data — the numbers will blow your mind, and they should blow away the naysayers’ arguments.  Read all about it at http://rocketdatascience.org/?p=204.

Follow Kirk Borne on Twitter @KirkDBorne

 

The Definitive Q&A Guide for Aspiring Data Scientists

I was asked five questions by Alex Woodie of Datanami for his article, “So You Want To Be A Data Scientist”. He used a few snippets from my full set of answers. The longer version of my answers provided additional advice. For aspiring data scientists of all ages, I provide in my article at MapR the full, unabridged version of my answers, which may help you even more to achieve your goal.  Here are Alex’s questions. (Note: I paraphrase the original questions in quotes below.)

1. “What is the number one piece of advice you give to aspiring data scientists?”

2. “What are the most important skills for an aspiring data scientist to acquire?”

3. “Is it better for a person to stay in school and enroll in a graduate program, or is it better to acquire the skills on-the-job?”

4. “For someone who stays in school, do you recommend that they enroll in a program tailored toward data science, or would they get the requisite skills in a ‘hard science’ program such as astrophysics (like you)?”

5. “Do you see advances in analytic packages replacing the need for some of the skills that data scientists have traditionally had, such as programming skills (Python, Java, etc.)?”

Find all of my answers at “The Definitive Q&A for Aspiring Data Scientists“.

Follow Kirk Borne on Twitter @KirkDBorne

Definitive Guides to Data Science and Analytics Things

The Definitive Guide to anything should be a helpful, informative road map to that topic, including visualizations, lessons learned, best practices, application areas, success stories, suggested reading, and more.  I don’t know if all such “definitive guides” can meet all of those qualifications, but here are some that do a good job:

  1. The Field Guide to Data Science (big data analytics by Booz Allen Hamilton)
  2. The Data Science Capability Handbook (big data analytics by Booz Allen Hamilton)
  3. The Definitive Guide to Becoming a Data Scientist (big data analytics)
  4. The Definitive Guide to Data Science – The Data Science Handbook (analytics)
  5. The Definitive Guide to doing Data Science for Social Good (big data analytics, data4good)
  6. The Definitive Q&A Guide for Aspiring Data Scientists (big data analytics, data science)
  7. The Definitive Guide to Data Literacy for all (analytics, data science)
  8. The Data Analytics Handbook Series (big data, data science, data literacy by Leada)
  9. The Big Analytics Book (big data, data science)
  10. The Definitive Guide to Big Data (analytics, data science)
  11. The Definitive Guide to the Data Lake (big data analytics by MapR)
  12. The Definitive Guide to Business Intelligence (big data, business analytics)
  13. The Definitive Guide to Natural Language Processing (text analytics, data science)
  14. A Gentle Guide to Machine Learning (analytics, data science)
  15. Building Machine Learning Systems with Python (a non-definitive guide) (data analytics)
  16. The Definitive Guide to Data Journalism (journalism analytics, data storytelling)
  17. The Definitive “Getting Started with Apache Spark” ebook (big data analytics by MapR)
  18. The Definitive Guide to Getting Started with Apache Spark (big data analytics, data science)
  19. The Definitive Guide to Hadoop (big data analytics)
  20. The Definitive Guide to the Internet of Things for Business (IoT, big data analytics)
  21. The Definitive Guide to Retail Analytics (customer analytics, digital marketing)
  22. The Definitive Guide to Personalization Maturity in Digital Marketing Analytics (by SYNTASA)
  23. The Definitive Guide to Nonprofit Analytics (business intelligence, data mining, big data)
  24. The Definitive Guide to Marketing Metrics & Analytics
  25. The Definitive Guide to Campaign Tagging in Google Analytics (marketing, SEO)
  26. The Definitive Guide to Channels in Google Analytics (SEO)
  27. A Definitive Roadmap to the Future of Analytics (marketing, machine learning)
  28. The Definitive Guide to Data-Driven Attribution (digital marketing, customer analytics)
  29. The Definitive Guide to Content Curation (content-based marketing, SEO analytics)
  30. The Definitive Guide to Collecting and Storing Social Profile Data (social big data analytics)
  31. The Definitive Guide to Data-Driven API Testing (analytics automation, analytics-as-a-service)
  32. The Definitive Guide to the World’s Biggest Data Breaches (visual analytics, privacy analytics)

Follow Kirk Borne on Twitter @KirkDBorne

4_book_image-6fd6043b69f0bb051f45055c9481cccc

Outliers, Inliers, and Other Surprises that Fly from your Data

Data can fly beyond the bounds of our models and our expectations in surprising and interesting ways. When data fly in these ways, we often find new insights and new value about the people, products, and processes that our data sources are tracking. Here are 4 simple examples of surprises that can fly from our data:

(1) Outliers — when data points are several standard deviations from the mean of your data distribution, these are traditional data outliers. These may signal at least 3 possible causes: (a) a data measurement problem (in the sensor); (b) a data processing problem (in the data pipeline); or (c) an amazing unexpected discovery about your data items. The first two causes are data quality issues that must be addressed and repaired. The latter case (when your data fly outside the bounds of your expectations) is golden and worthy of deeper exploration.

(2) Inliers — sometimes your data have constraints (business rules) that are inviolable (e.g., Fraction of customers that are Male + Fraction of customers that are Female = 1). A simple business example would be: Profit = Revenue minus Costs. Suppose an analyst examines these 3 numbers (Profit, Revenue, Costs) for many different entries in his business database, and he finds a data entry that is near the mean of the distribution for each of those 3 numbers. It appears (at first glance) that this entry is perfectly normal (an inlier, not an outlier), but in fact it might violate the above business rule. In that case, there is definitely a problem with these numbers — they have “flown” outside the bounds of the business rule.

(3) Nonlinear correlations — fitting a curve y=F(x) through data for the purpose of estimating values of y for new values of x is called regression. This is also an example of Predictive Analytics (we can predict future values based upon a function that was learned from the historical training data). When using higher-order functions for F(x) (especially polynomial functions), we must remember that the curves often diverge (to extreme values) beyond the range of the known data points that were used to learn the function. Such an extrapolation of the regression curve could lead to predictive outcomes that make no sense, because they fly far beyond reasonable values of our data parameters.

(4) Uplift — when two events occur together more frequently than you would expect from random chance, then their mutual dependence causes uplift. Statistical lift is simply measured by: P(X,Y)/[P(X)P(Y)]. The numerator P(X,Y) represents the joint frequency of two events X and Y co-occurring simultaneously. The denominator represents the probability that the two events X and Y will co-occur (at the same time) at random. If X and Y are completely independent events, then the numerator will equal the denominator – in that case (mutual independence), the uplift equals 1 (i.e., no lift). Conversely, if there is a higher than random co-occurrence of X and Y, then the statistical lift flies to values that are greater than 1 — that’s uplift! And that’s interesting. Cases with significant uplift can be marketing gold for your organization: in customer recommendation engines, in fraud detection, in targeted marketing campaigns, in community detection within social networks, or in mining electronic health records for adverse drug interactions and side effects.

These and other such instances of high-flying data are increasingly challenging to identify in the era of big data: high volume and high variety produce big computational challenges in searching for data that fly in interesting directions (especially in complex high-dimensional data sets). To achieve efficient and effective discovery in these cases, fast automatic statistical modeling can help. For this purpose, I recommend that you check out the analytics solutions from the fast automatic modeling folks at http://soft10ware.com/.

The Soft10 software package is trained to report automatically the most significant, informative and interesting dependencies in your data, no matter which way the data fly.

(Read the full blog, with more details for the 4 cases listed above, at: https://www.linkedin.com/pulse/when-data-fly-kirk-borne)

Follow Kirk Borne on Twitter @KirkDBorne

Reach Analytics Maturity through Fast Automatic Modeling

The late great baseball legend Yogi Berra was credited with saying this gem: “The future ain’t what it used to be.” In the context of big data analytics, I am now inclined to believe that Yogi was very insightful — his statement is an excellent description of Prescriptive Analytics.

Prescriptive Analytics goes beyond Descriptive and Predictive Analytics in the maturity framework of analytics. “Descriptive” analytics delivers hindsight (telling you what did happen, by generating reports from your databases), and “predictive” delivers foresight (telling you what will happen, through machine learning algorithms). Going one better, “prescriptive” delivers insight: discovering so much about your application domain (from your collection of big data and information resources, through data science and predictive models) that you are now able to take the actions (e.g., set the conditions and parameters) needed to achieve a prescribed (better, optimal, desired) outcome.

So, if predictive analytics can use historical training data sets to tell us what will happen in the future (e.g., which products a customer will buy; where and when your supply chain will need replenishing; which vehicles in your corporate fleet will need repairs; which machines in your manufacturing plant will need maintenance; or which servers in your data center will fail), then prescriptive analytics can alter that future (i.e., the future ain’t what it used to be).

When dealing with large high-variety data sets, with many features and measured attributes, it is often difficult to build accurate models that are generally useful under a variety of conditions and that capture all of the complexities of the response functions and explanatory variables within your business application. In such cases, fast automatic modeling tools are needed. These tools can help to identify the minimum viable feature set for accurate predictive and prescriptive modeling. For this purpose, I recommend that you check out the analytics solutions from the fast automatic modeling folks at http://soft10ware.com/.

The Soft10 software package is trained to observe quickly and report automatically the most significant, informative and explanatory dependencies in your data. Those capabilities are the “secret sauce” in insightful prescriptive analytics, and they coincide nicely with another insightful quote from Yogi Berra: “You can observe a lot by just watching.”

(Read the full blog at: https://www.linkedin.com/pulse/prescriptive-analytics-future-aint-what-used-kirk-borne)

Predictive versus Prescriptive Analytics

Predictive Analytics (given X, find Y) vs. Prescriptive Analytics (given Y, find X)

Follow Kirk Borne on Twitter @KirkDBorne

Fraud Analytics: Fast Automatic Modeling for Customer Loyalty Programs

It doesn’t take a rocket scientist to understand the deep and dark connection between big money and big fraud. One need only look at black markets for drugs and other controlled and/or precious commodities. But what about cases where the commodity is soft, intangible, and practically virtual? I am talking about loyalty and rewards programs.

A study by Colloquy (in 2011) estimated that the loyalty and rewards programs in the U.S. alone had an estimated outstanding value of $48 billion US dollars. This is “outstanding” value because it doesn’t carry tangible benefit until the rewards or loyalty points are cashed in, redeemed, or otherwise exchanged for something that you can “take to the bank”. In anybody’s book, $48 billion is really big value — i.e., big money rewards for loyal customers, and a big target for criminals seeking to defraud the rightful beneficiaries of these rewards.

The risk vs. reward equation in loyalty programs now has huge numbers on both sides of that equation. There’s great value for customers. There’s great return on investment for businesses seeking loyal customers. And that’s great bait to lure criminals into the game.

In the modern digital marketplace, it is now possible to manipulate payment systems on a larger scale, thereby defrauding the business of thousands of dollars in rewards points. The scale of the fraud could match the scale of the entire loyalty program for some firms, which would therefore bankrupt their supply of rewards for their loyal and faithful customers. This is a really big problem waiting to happen unless something is done about it.

The something that can be done about it is to take advantage of the fast predictive modeling capabilities for fraud detection that are enabled by access to more data (big data), better technology (analytics tools), and more insightful predictive and prescriptive algorithms (data science).

Fraud analytics is no silver bullet. It won’t rid the world of fraudsters and other criminals. But at least fast automatic modeling will give firms better defenses, more timely alerts, and faster response capabilities. This is essential because, in the digital era, it is not only business that is moving at the speed of light, but so also are the business disruptors.

Some simple use cases for fraud analytics within the context of customer loyalty reward programs can be found in the article “Where There’s Big Money, There’s Big Fraud (Analytics)“.

Payment fraud reaches across a vast array of industries: insurance (of all kinds), underwriting, social programs, purchasing and procurement, and now loyalty and rewards programs. Be prepared. Check out the analytics solutions from the fast automatic modeling folks at http://soft10ware.com/.

Follow Kirk Borne on Twitter @KirkDBorne