These are a few of my favorite things… in Big Data and Data Science: A to Z

A while back, we made a list from A to Z of a few of our favorite things in big data and data science. We have made a lot of progress toward covering several of these topics. Here’s a handy list of the write-ups that I have completed so far:

AAssociation rule mining:  described in the article “Association Rule Mining – Not Your Typical Data Science Algorithm.”

C – Characterization:  described in the article “The Big C of Big Data: Top 8 Reasons that Characterization is ‘ROIght’ for Your Data.”

H – Hadoop (of course!):  described in the article “H is for Hadoop, along with a Huge Heap of Helpful Big Data Capabilities.” To learn more, check out the Executive’s Guide to Big Data and Apache Hadoop, available as a free download from MapR.

K – K-anything in data mining:  described in the article “The K’s of Data Mining – Great Things Come in Pairs.”

L – Local linear embedding (LLE):  is described in detail in the blog post series “When Big Data Goes Local, Small Data Gets Big – Part 1” and “Part 2

N – Novelty detection (also known as “Surprise Discovery”):  described in the articles “Outlier Detection Gets a Makeover – Surprise Discovery in Scientific Big Data” and “N is for Novelty Detection…” To learn more, check out the book Practical Machine Learning: A New Look at Anomaly Detection, available as a free download from MapR.

P – Profiling (specifically, data profiling):  described in the article “Data Profiling – Four Steps to Knowing Your Big Data.”

Q – Quantified and Tracked:  described in the article “Big Data is Everything, Quantified and Tracked: What this Means for You.”

R – Recommender engines:  described in two articles: “Design Patterns for Recommendation Systems – Everyone Wants a Pony” and “Personalization – It’s Not Just for Hamburgers Anymore.” To learn more, check out the book Practical Machine Learning: Innovations in Recommendation, available as a free download from MapR.

S – SVM (Support Vector Machines):  described in the article “The Importance of Location in Real Estate, Weather, and Machine Learning.”

Z – Zero bias, Zero variance:  described in the article “Statistical Truisms in the Age of Big Data.”

Leave a Reply

Your email address will not be published. Required fields are marked *